Large-Scale, Distributed

Machine Learning

CSE545 - Spring 2020
Stony Brook University

H. Andrew Schwartz

Supervised Learning

(genes) (health)

X, X, X, Y

Supervised Learning

Supervised Learning

Supervised Learning

Task: Determine a function, f(or parameters to a function) such that /x) =7

Supervised Learning

Training and test set
X1 Xz X3 X4 XS X6 :
X X X X X X Estimate y =f(x) on X, Y.
¥ 7 X8)‘(9 10 11X 12 Hope that the same f(x)
13 14 15 m also works on unseen X', Y’

1. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.arg

Task: Determine a function, f(or parameters to a function) such that /x) =7

Common Goal: Generalize to new data

Does the
model hold up?

Original Data New Data?

Common Goal: Generalize to new data

Does the
model hold up?

Training Data

Testing Data

Training
Data

ML: GOAL

Does the
model hold up?

Develop-
ment
Data

Testing Data

Set training
hyperparameters

N-Fold Cross Validation

Goal: Decent estimate of model accuracy

All data
lter 1 train dev test
lter 2 train dev ‘I test ‘I train
lter 3 train ‘I dev ‘I test | train

REViEW: DiStributed M |_ Done very often in practice. Not

talked about much because it's
1. Distribute copies of entire dataset ———— mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute da.ta \\m\ Preferred method for big data or
2. EaCh node 2nd§ pa][ameters;.for subset f:f a very complex models (i.e.
' ?ef_j)s@nféal - e'ér%@rogw ‘%Eas::ame o models with many internal
i. Distributed All-Reduce parameters).
Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: PalMlodel Parellelism:d Con: High communication for transferring
Intermediar data.

0

batch_size-1

N-batch_size

N

update params of each
node and repeat

=2

parameters

]—>- /
]—>-

—r— —— —A— —A— —A— —A— —A— ——

1. Linear modeling
(linear and logistic regression)

2. Recurrent Neural Networks
Where X is a sequence of data

3. Convolutional Neural Networks
Where X might have spatial relationships

From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs Weights Net input Activation
function function

output

Common Activation Functions

T =wX 1-//;,__
Logistic: o(z)=1/(1 +¢%) 7 --
I

Hyperbolic tangent: tanh(z) = 20(2z) - 1 = (- 1)/ (e* + 1)

tanhx

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs Weights Net input Activation
function function

output

From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs Weights Net input Activation
function function

output

Batch Normalization

Batch Normalization

Input: Values of x over a mini-batch: B = {x1 . };
Parameters to be learned: v, 3
Output: {y; = BN, g(:)}

1 »
Up — — Z Py // mini-batch mean
T =1
1 m
0F — — Z(% — pB)° // mmi-batch variance
m =l
. Ti — .
Ty — — HE // normalize

\/G%Jre

Yi < vT; + B = BN, g(z;) // scale and shift

Batch Normalization

/ (but within the current batch of
/L

This is just standardizing!

observations)

Input: Values of x over a mini-batch: B = {21, }: l

Parameters to be learned: v, 3
Output: {y; = BN, g(:)}

1 m
— — : // mini-batch
B m;x mini-batch mean

I < . ,
0 ooy 2(% — pB)? // mimi-batch variance
1=

Ti — B

Yi < vT; + B = BN, g(z;) // scale and shift

Ti // normalize

Batch Normalization

X y

batch_size-1

N-batch_size

IEEEEREEERER]

Batch Normalization

/ (but within the current batch of
N

This is just standardizing!

observations)

Input: Values of x over a mini-batch: B = {21, }: l

Parameters to be learned: v, 3

Output: {y; = BN, g(x;)} Why?
. e Empirically, it works!
U 1 chz // mini-batch mean o Conceptually, generally good
M= for weight optimization to
) L) o . keep data within a reasonable
O +— - Z(% — 1iB) // mini-batch variance range (dividing by sigma) and
=l .y .
i — g such that positive weights

Ti b — // normalize move it up and negative down
751 (centering).

e Small effect: When done over
mini-batches, adds
regularization due to
differences between batches.

Yi < vT; + B = BN, g(z;) // scale and shift

Feed-Forward
Network

input layer

hidden layer 1 hidden layer 2

output

Recurrent Neural Network

C Yt ><.y(¢) :f(h(t)VV)

Activation Function

1] 7 h - —
hidden layer” —s (t){ Ioﬁ)_g(h(t_])UjomV)

C %)

I 3Tl W] Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep.

Backward Propagation =
through Time '
h(m = 0
for i in range(1, len(x)):
h(D = tf.tanh(tf.matmul(u,h“fn)+ tf.matmul(w,x(n))

Yy = tf.softmax(tf.matmul(V, h(ﬁ))

cost = tf.reduce mean(-tf.reduce_sum(y*tf.log(y pred))

RNN: Optimization

Backward Propagation |
through Time /

To find the gradient for the overall graph, we\
use back propogation, which essentially

higy = © chains together the gradients for each node
for 1 in range(1, len(x)): (function) in the graph.

h(n = tf.tanh(tf.matmul (U,

With many recursions, the gradients can
Yy = tf.softmax(tf.matmul“vanish or explode (become too large or

. small for floating point operations).
cost = tf.reduce_mean(—tf.redd\\\;)///

RNN: Optimization

Backward Propagation =
through Time '
CVi2y Yay Ya)
Yoo Yo o Y

Wb S Wb <— Wb |51 Wb

(Geron, 2017)

How to Addressing Vanishing Gradient?

Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model “unrolled” depiction

(Geron, 2017)

RNN: The GRU

Gated Recurrent Unit

Yy
A

(1) —p> ®

&
\J
=

- ® Element-wise
1~ multiplication

@ Addition |
mm logistic !

GRU cell J

X (Geron, 2017)

RNN: The GRU

Gated Recurrent Unit

update gate

relevance gate Yo
A

\

h(t-1) —_— \ (1) (‘B\

- ® Element-wise
1~ multiplication

@ Addition |
mm logistic !

GRU cell J

) (Geron, 2017)

RNN: The GRU

Gated Recurrent Unit

update gate A candidate for updating h,

relevance\gate ‘ V{t)/ sometimes called: h~
ey o\ @ = |/

(t1) —p ® . hm
/ | g Slementiulss
E multiplication i
® ® Additon |
L R ' Emm logistic
| w—tonh
- GRU cell J
x

) (Geron, 2017)

RN N : The G RU Ly = O'(szT' X T thT' h(t—l) + bz)

Gated Recurrent Unit

Yy
A
h i B
(1) —» & @ - hm
'~ Element-wise
multiplication |
@ Addition
| logistic
 m—tonh |
GRU cell

The cake, which contained candles, was eaten.

What about the gradient?

The gates (i.e. multiplications
e T. T-
zy =0(We X+ W by +b,) based on a logistic) often end up
r, =o(W, x,+W, -h,_ +b,) ?eepinglthe hidtclje)n stite exa_lcf’;:y
_ T T or nearly exactly) as it was. Thus,
8y = tanh (Wy X+ Wy, - (ry ®hg_p) +by) for most dimensions of h,
hy =z,®h,_,+d-2,)®8,

y ~
I Ny ™ Ny

4 N
(t-1) —p X

> h,

XD

GRU cell

The cake, which contained candles, was eaten.

What about the gradient?

T T
Z(f) = O-(Wx : X(I) + th : h(t—l) + bZ)

Z

T T
l’(t) - G(er . X(Z‘) + Whr . h(t—l) =+ br)
T T
g(l‘) — tanh (Wxg . X(t) + Whg ‘ (l‘(t) ® h(l‘—l)) + bg)

o =Zp®h_y+1-17,)08g,

Yy
A

\

XD

GRU cell

> h,

The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

Ny ™ N
This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.

The GRU (LSTM): Zoomed out

Take-Aways

e Simple RNNs are powerful madels but they are difficult to train:
o Just two functions h(t) and Voo where h(t) is a combination of h(t-l)
o Exploding and vanishing gradients make training difficult to converge.

e LSTM (e.g. GRU cells) solve
o—Hidden states pass from one time-step to the next, allowifor long:distance

and Xy

dependencies.
o Gates-are usedto keep hidden states from changing rapidly (and thus keeps

gradients under control).
o To train: mini-batch stochastic gradient descent over cross-entropy cost

Convolutional Neural Networks

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

(wikipedia)

Feature maps

Convolution Layer

Convolutions Subsampling Convolutions Subsampling Fully connected

“Convolution”

3(11(1]12 1.8 |4 _
110 |71312 |6
213 |5 1_!1 3 Rl
— —_ ® 10 [-1
1(4 (1265
1|0 (-1
g2 |213|7 |2
Filter 3x3
9 121|625 |1

Original image 6x6

(Barter, 2018)

Convolution Layer

Feature maps

= W

T .

L—-—-—-—-

G AR
winlk w|Nng
N O =N

kﬂlﬂl—llh-l

NN AW O |-

o)}
N

5

=N ;W OB

Original image 6x6

Convolutions Subsampling Convolutions

“Convolution”

/

®

(Barter, 2018)

Filter 3x3

Output 4x4

Result of the element-wise
product and sum of the
filter matrix and the orginal
image

Subsampling Fully connected

Convolution Layer

Feature maps

Convolutions Subsampling

“Convolution”

Convolutions

Original image 6x6

Breakthrough in image
classification: Let the
model automatically
learn the filter weights!

\l

)

3l1(1]218 |4
191071312 |6 L
2 13 |5 |1 Jl 3 g = J
— ~ x 0 |-1
1 (4|12 6|5
0 -1

g2 lzlalz |2

Filter 3x3
g12 |6 |2 |5 |4 Output 4x4

Result of the element-wise
product and sum of the
filter matrix and the orginal
image

...... .
*.. Output
."‘

Subsampling Fully connected

Subsampling (Pooling)

(wikipedia) Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

2x2 pooling

3\f§\

Subsampling (Pooling)

(wikipedia) Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

2x2 pooling

¢ ﬁﬁ\ Types of pooling

1 —6—3 7 - ® max
e avg

Subsampling (Pooling)

(wikipedia) Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

2x2 pooling

¢ ﬁﬁ\ Types of pooling
3.5

1 —6—3 7 e max
e avg

Standard Training Loss Function

RNN_cost = tf.reduce mean(-tf.reduce sum(y*tf.log(y _pred))

Logistic Regression Likelihood: L(Bo, 51, ..., Bkl X, Y) = Hp(xi)yi(] — p(x;)) ¥

: V]
: : 3 J' = 1) ~ () ” ”
Final Cost Function: J'/ = Y g g u,'_f;!m.r,r __e_‘;f':f; -- "cross entropy error

Standard Training Loss Function

RNN_cost = tf.reduce mean(-tf.reduce sum(y*tf.log(y _pred))

Logistic Regression Likelihood: L(Bo, 51, ..., Bkl X, Y) = Hp(a:i)yi(] — p(x;)) ¥

N
Log Likelihood: (8) =" yilog plx;)+(L—y)log (1—p(x;))
N 1=1
Log Loss: J(7) = —% yilog plx;) + (1 —y:Mlog (1 — p)x;))
i=1 /
N7
Cross-Entropy Cost: Z Z yilog p(x, ;) (a “multiclass” log loss)

i=1 ;=1

: V]
: : 3 'I' = 1) ~ (1) ” ”
Final Cost Function: J'/ = Y g g u'_f;fm.r,r ;_‘;f':f; -- "cross entropy error

Feed Forward Network
(full-connected)

input layer

hidden layer 1 hidden layer 2

output

Feature maps

Review

Convolutional NN

Convolutions Subsampling Convolutions Subsampling Fully connected

“Convolution”

3 i1 112 ;8 |4
1. 0 |2 32 |6
2 [3 5 1]1 3 Pl
— x 1[0 |-1
114|112 16 |5
1 /0 (-1
T2 1 193 |F 12
Filter 3x3
912 16 |215 |1 Output 4x4

Original image 6x6

Result of the element-wise
product and sum of the
filter matrix and the orginal

(Barter, 2018) image

Recurrent Neural Network

C Yi >< Y :f(h(t)VV)

Activation Function

1] g b h -
hidden layer” —s (t){ h(t):g(h(t_l)U+x(t)V)

C %)

I 3Tl W] Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep.

FFN CNN RNN

Can model computation (e.9. matrix operations for a single input) be parallelized?

FFN CNN RNN

Can model computation (e.9. matrix operations for a single input) be parallelized?

FFN CNN RNN

C Yi
)
C Xt

Can model computation (e.9. matrix operations for a single input) be parallelized?

9 O

FFN CNN RNN

a I
Ultimately limite how complex the model can

be [,‘,e. ite total number of ((‘)
paramers/weights) a¢ compared to o CIVN.
\

') be parallelized?

Can model computation (e.9. matrix operations for a sin

The Transformer: Attention-only Models

Can handle sequences and long-distance dependencies,
but....

e Don’t want complexity of LSTM/GRU cells
e Constant num edges between input steps
e Enables “interactions” (i.e. adaptations) between words

e Easy to parallelize -- don’t need sequential processing.

The Transformer: Attention-only Models

Challenge: The ball was kicked by kayla.

e Long distance dependency when translating:
o Ya) Ve o, e

r 1 1
A

1 1
» A — A — — A — A -
t f

A A A
‘ C)g g} t))
(%9 <£0> Y D) Vez)

Kayla kicked the ball.

The Transformer: Attention-only Models

Challenge: The ball was kicked by kayla.

e Long distance dependency when translating:

V(o) Yo Ye2) e (4)

Kayla kicked the ball.

c,;
hi>s g Aiss a

’ hi->s hi->s
o,/ values 4

a o
A
ut 4
[J[J [Score function:
| - J [z4] -' Ttir
'I.'r"’]“.rn.-r:.ff(h--ﬁ; 5) — s |} h;

Qp,—s = Sth'HlaX(w(h“i.'-' b))

. s

.= "

P

-

al® . .

o
o "
. "
P
. "

J

Score function:
NN A & v
'I.'r"lm'n.H(h“ﬁ:' b) =s 1l h;

(- = softmax(y(h;, s))

Ch;

5]

E afh.-fj—}.f-;” E;r}.

n=1

The Transformer: Attention-only Models

Challenge:
e Long distance dependency when translating:
Attention came about for encoder decoder models.

Then self-attention was introduced:

.
.= "
P
PR

" .
- .

. - "
P <
P
. "

J

. "
PRI

Score function:
NN A & v
'I.'r"lm'n.H(h“ﬁ:' b) =s 1l h;

(- = softmax(y(h;, s))

Ch;

5]

E afh.-fj—}.f-;” E;r}.

n=1

J

Score function:
NN A & v
'I.'r"l??r.':r.ff(h“ﬁ: b) =s 1l h;

o, s = softmax(v(h;, s))

5]

C‘f!..g — E C'fh..,,j—}.‘:” E'.f.i'-

n=1

Attention as weighting a value
based on a query and key:

Output

activation

1,

—)- gﬂi

A

h

Query ——>

/ / 1
Vo

Key

Value

(Eisenstein, 2018)

The Transformer: Attention-only Models

Attention as weighting a value
based on a query and key:

Output

1,

—)- gﬂi

activation
A
Query ——{ | v,
) y
Key

Value

(Eisenstein, 2018)

The Transformer: Attention-only Models

\

o

na - 1 IIJ

Output /D\

1 1 1N WIS

— .
activation —_:
A

Query —>

Va
A

Key

Output

Value

(Eisenstein, 2018)

The Transformer: Attention-only Models

A I Ay AR AR o
Output -/L,_rl\

o

Output

Y activation —% i o
Query —— | ¢,
h A
b
z Key Value
= -
Ioz’—] hz’—]

(Eisenstein, 2018)

The Transformer: Attention-only Models

\A

| l.l“‘vlwlvj | “llw‘,ul\.nluvv\Ilv

Output

The Transformer: Attention-only Models

\ FFN
T

| l.l“‘vlwlvj | “llw‘,ul\.nluvv\Ilv

Output

The Transformer: “Attention-only” models

y -1 y Z —y i+1 y +2

The Transformer: “Attention-only” models

y i-1 -y] y i+1 y i+2
Output
o
Attend to all hidden states

, in your “neighborhood”.
b

f’z 1 hz’ i+1

°f T T T
w w.

The Transformer: “Attention-only” models

y i-1 -y] y i+1 y i+2
Output Yap(hi, 8) = s hy
k'q
oL
Y

The Transformer: “Attention-only” models

Vi1 Y Vit Vs scaling
parameter
Olltpllt ?rbdp (/e,q) _ (ktq s
oL
(%

The Transformer: “Attention-only” models
y -1 »y Z y i+1 y +2

Vip (bg) = (Kg)o

5 5
Linear layer:
doflproduct WTX

as e .
q One set of weights for

each of for K, Q, and V

The Transformer

Limitation (thus far): Can’t capture multiple types of dependencies between words.

| kicked the ball

Who Did what?

. .

] kicked the ball

The Transformer

Solution: Multi-head attention

| kicked the ball
o
®@ OO©0 @ 00
Who To whom?

Did what?

| kicked the

Multi-head Attention

: Scaled Dot-Product
Attention

Transformer for CO—~C @\}@

Encoder-Decoder Ko Ko Xl

i k-
iStage 2 Nx Add & Norm J |
' Mult-Head | |:
i Attention :
Il)
| v |

L R SRR H "..

iStage 1 Positional 2
: Encoding

Transformer for
Encoder-Decoder

Embedding lookup

sequence index (t) IStage 2 Nx

Add & Norm] |}

Multi-Head
Attention

LI

-

i
L]
POSITIONAL
ENCODING .- e o ' 1 o
) . Embedding i
EMBEDDINGS xi[| | | | I F R —— t —
Inputs
INPUT IE suis

Transformer for
Encoder-Decoder

~{CAdd & Norm] ||

Multi-Head
Attention

iStage 1

Positional
Encoding

Transformer for
Encoder-Decoder

4)

~{ Add & Norm] |:

Residualized Mull-Head | |}

. Attention !
Connections F |
o e

0) iStage 1 Positional 5 1
; Encoding ;

Input

Transformer for (

Encoder-Decoder

s

U

Residualized
Connections

>

Add & Norm

ttttttttttttttttttttttttt

~ Add & Norm |

Multi-Head
Attention

%

iStage 1 Positional 2
: Encoding

i Input

residuals enable
positional
information to be
passed along

With residuals

Without residuals

Transformer for
Encoder-Decoder

' ’;(0) ? ?(2)
Embedding lookup
| | I
eesororecderreees
il LAdd & Norm
i| | Multi-Head
: Attention
iStage 2 Nx :
% tag ~={ Add & Norm]1l: : e
i Multi-Head i| 1 Multi-Head
i Attention i Attention
[] [l
a o e
IOV, . .50 S N
iStage 1 Positional 2
: Encoding ?_®
Input Output
: Embedding Embedding

Qutputs
(shifted right)

Transformer for 5[F T & \f*@

Encoder-Decoder L L Lk

Embedding lookup

| | |
i.'l. 'rrld-.n '-.-.'.-.-.-..-..'.'.'-.-.'.-.'.'.'.'.'.'..'.'.-.-.-.-..'.'.'.'.'-.-.-.'.'.'.'.'.'i
| iAdd&_Nﬂ”" Stage 3 |
i | Multi-Head ;
i[i| | Attention ;
1ty) Nx :
; Stage 2 |
essentially, a language 5
model ; i
iSiage i Posiona 2y & TR T I —
; encoding O HE T BN Encosing g
i input : :
: Embedding | | |: i

Inputs Qutputs

(shifted right)

Transformer for (.
EnCOder-DeCOder);(0) X1y)%(2) "~__<_j°_>_ _______________________________

Embedding lookup
I I I

Value \ =
matmulv
softmax \ \
. l | dot-prod \
essentially, a language .
model -~ d, ds d,
P ”
\dot prod Query 7 -
N e Decoder blocks out
matmulK matmulq P

T T Pl future inputs

Transformer for (_ \;N@
Encoder-Decoder ‘\%(0) _______ % o ! () J ----------------------------

Add conditioning of the LM
based on the encoder

essentially, a language
model

iStage 1 Positional & i D 000000 ce A :
: Encoding y i

Qutputs
(shifted right)

Transformer for

Encoder-Decoder

Stage 1 Positional D
Encoding

Add & Norm '

~{ Add & Norm]

Mult-Head | [

Attention :

At 4 |

\ o A

.......... -

Input E
Embedding

'?'"“"""-"'i

o
.,

ST

Qutput
Probabilities

Add & Norm
Multi-Head
Attention

Masked
Multi-Head
Attention

Output

Qutputs
(shifted right)

| Add & Norm Je=

Transformer (as of 2017)

“WMT-2014" Data Set. BLEU scores:

EN-DE EN-FR
GNMT (orig) 24.6 39.9
ConvSeg25eq 25.2 40.5
Transformer® 28.4 41.8

Qutput

Probabilities
Transformer £ I
e Utilize Self-Attention {(AsdaNom =~
e Simple att scoring function (dot product, scaled) i
E.&'J' S e LLLLLLLLLs
. i Add &
e Added linear layers for Q, K, and V || ==
: : ' HE Attentio
e Multi-head attention S — N
e Added positional encoding z L[CAddaNom Je |
* | ~={ Add & Norm] ; Ve
e Added residual connection Multi-Head |]: i} | Muli-Head
Attention E : Attention
: . : Lt A
e Simulate decoding by masking . i —)
Positional 5 " T Y Boshional
hitps://4.bp. blogspot.com/-OlrV-PAtEKQ/W3RkOJCBKal/AAAAAAAADOq/aRNERIEk - oy PArRf = o /. Engoding
np r utpu
GAs/s640/image1.gif Embedding | i i | Embedding
Inputs Outputs

(shifted right)

Transformer
Why?
e Don’t need complexity of LSTM/GRU cells
e Constant num edges between words (or input
steps)
e Enables “interactions” (i.e. adaptations)
between words
e Easy to parallelize -- don’t need sequential :
processing. e T
Multi-Head
Attention
Drawbacks: N = i
e Only unidirectional by default o e o p
e Only a “single-hop” relationship per layer Ericading ¥
(multiple layers to capture multiple) Emﬂgdﬂing

Qutput
Probabilities

?"“"'-'-"'i

| Add & Norm Je=

'Add & Norm
Multi-Head
Attention

ST

Masked
Multi-Head
Attention

Output

Qutputs
(shifted right)

Positional
Encoding

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

Drawbacks of Vanilla Transformers:
e Only unidirectional by default
e Only a “single-hop” relationship per layer
(multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

e Bidirectional context by “masking” in the middle
e Alot of layers, hidden states, attention heads.

Drawbacks of Vanilla Transformers:
e Only unidirectional by default
e Only a “single-hop” relationship per layer
(multiple layers to capture multiple)

BERT

tokenize into “word pieces”

Sentence A = The man went to the store. Sentence A = The man went
Sentence B = He bought a gallon of milk, Sentence B = Penguins are

Label = IzNextSentence

Label = notNextSentence

Input

[MASK]
e ™

[MASK]
Ny ,/' 4
(likes ﬂ play W

Token
Embeddings

E |

Sentence
Embedding

Transformer

-+
EB
+

Positional
Embedding

E

8

(Devlin et al., 2019)

Bert: Attention by Layers

https://colab.research.gooqgle.com/drive/1viOJ1IhdujVifH857hvYKIdKPTD9Kid8

Layer:| 2 5 Attention:| All

[CLS)
i
went
to
the
store

[SEF]
at
the
store

|

bought
fresh
straw
#i#berries

[SEPj

(Vig, 2019)

|

bought
fresh
straw
##berries

[SEP]

BERT Performance: e.g. Question Answering

GLUE scores evolution over 2018-2019

B Single generic models 2018 Task-specific-SOTA == Human performance
90 r
85
80
75
70

BILSTM+ELMo GPT BERT BERT Big BigBird

https://rajpurkar.qgithub.io/SQuAD-explorer/

BERT: Pre-training; Fine-tuning

L w Lw:)] (ws | [Owa] [ws
Embedding Iy
to vocab + T I I T
softmax
[Classification Layer: Fully-connected layer + GELU + Norm
(o) (oo) (oo) (o) (o
1 1 | 1 i
Transformer encoder
12 or 24 layers

Embedding T T T T T

[w Cwe | [wa | [wasa | [ws |

T T T T T

W1 Wa W3 W4 Ws

BERT: Pre-training; Fine-tuning

Transformer encoder
12 or 24 layers
/
Embedding T T T T T
[wi Lw] [Lw | [(masa] [ws |

T T T T T

W1 Wa W3 W4 Ws

BERT: Pre-training; Fine-tuning

Embeddin Novel classifier

to vocab

sofmn (e.g. sentiment classifier; stance detector...etc..)

A A AR AR
12 or 24 ayers
el 1] i T
[w Lwe] ([we | [omsa] [ws |
Lol L L

Summary

e (Goal is accurate prediction of y (outcome) given features (x)
e Use L1 or L2 penalization (as a regularization) to avoid overfit
e Reason for Train, Dev, Test split

e Components of a neural network

e Batch Normalization

e Distribution options: why is data parallelism preferred?

e Recurrent Neural Network

e Convolution Operation with Filters

